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Abstract:  This paper investigates adaptive H  control problem for switched dissipative Hamiltonian systems 

(SDHSs). Firstly, using the dissipative Hamiltonian structural properties, such systems generated an augmented 

SDHS, with which some results on the controller design are then obtained. When there are external 

disturbances and parameter perturbations in such systems, a family of adaptive H  controller is designed using 

the multiple Lyapunov functions (MLFs). Secondly, an algorithm for solving parameters of controllers is 

proposed with symbolic computation. The proposed method avoids solving Hamilton-Jacobi-Issacs inequalities 

(equations), and the obtained controllers are relatively simple in form and easy in operation. Finally, a 

numerical example is studied by using the new results proposed in this paper to SDHSs with external 

disturbances and parameter perturbations, and some numerical simulations are carried out to support our new 

results. 
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1 Introduction 
Switched systems are an important class of 

hybrid systems, which have developed rapidly in 

recent years. The motivation for studying switched 

systems is from the fact that many practical systems 

are inherently multi-models in the sense that several 

dynamical subsystems are required to describe their 

behaviour depending on various changing 

environmental factors. The widespread applications 

of switched systems are also motivated by 

increasing performance requirements in control, 

especially in the presence of large disturbances or 

uncertainties [1-4]. A common Lyapunov function 

for all subsystems is a necessary and sufficient 

condition for switched system to be asymptotically 

stable under arbitrary switching laws [5, 6]. It has 

been shown that the multiple Lyapunov functions 

(MLFs) approach proposed in [7] is an effective tool 

for choosing such switching laws. A hybrid 

nonlinear control methodology for a broad class of 

switched nonlinear systems with input constraints 

was proposed [8], which is the integrated synthesis 

via the MLFs. The sufficient conditions for 

exponential stability and weighted 2L -gain 

developed for a class of switching signals with 

average dwell time [9]. The MLFs is derived a 

sufficient condition for the switched nonlinear 

system to be asymptotically stable with H -norm 

bound [10]. The switched dissipative Hamiltonian 

system (SDHS) is a kind of important nonlinear 

hybrid systems. Such system not only plays an 

important role in development of hybrid control 

theory, but also finds many applications in practical 

control designs for obtaining better control 

performance [11, 12]. The stability of SDHSs under 

arbitrary switching paths has been investigated via 

the dissipative Hamiltonian structural properties and 

the MLFs [13]. 

Adaptive control problems and the 

parameterization of all stabilizing controllers are 

two of the most researched and written about issues 

in modern control. Adaptive H  control has proved 

to be a very useful method in nonlinear control 

systems which are sensitive to parameter uncertainty. 

With adaptive H  control it is possible to estimate 

parameters errors and to compensate for those errors, 

and improve robustness. Some basic adaptive 

control methods for first-order, linear, nonlinear, 

single-input and multi-input systems have been 

described [14]. [15] described recursive 

methodology of back-stepping for nonlinear and 

adaptive control design. In [16], a novel approach 

for the solution of nonlinear adaptive control 
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problems is proposed. The approach for the solution 

of nonlinear adaptive control problems is proposed. 

Furthermore, a family of controllers can solve the 

underlying H
 control problems for a controller 

satisfying the additional design objectives, which 

are internal stability and disturbance attention. A 

class of local nonlinear H
 controllers is 

parameterized as nonlinear fractional 

transformations on contractive, stable nonlinear 

parameters via output feedback have proposed 

[17,18]. In [19,20], the state-space formulas 

extended and a family of H
 state-feedback 

controller presented for n-dimensional nonlinear 

system. A family of reliable nonlinear H  

controller has been proposed via solving the HJ 

equations [21]. The generalized Hamiltonian system 

studied and a family of parameterized controller 

proposed in H  control and adaptive control 

[22,23]. The controllers [17-23] are intended to 

solve the control problem for just one system. 

Particularly, there are few results on adaptive H  

control design of SDHSs so far. 

Therefore, how to find a method for designing 

parameterized controller to solve adaptive H  

problem for SDHSs is a challenging issue. In this 

paper, we show that all the Hamiltonian function of 

the subsystems can be used as the MLFs for the 

SDHSs under a realistic assumption. We present a 

novel, straightforward and convenient method to 

design a family of controllers to insure that the 

SDHSs are adaptive H  
control. 

The remainder of this paper is organized as 

follows. In Section 2, the problem of adaptive H  

control for SDHSs is formulated. The main 

contributions of this paper are then given in Section 

3, in which a family of controllers and an algorithm 

for solving parameters of controller are provided, 

respectively. We present a numerical example for 

illustrating effectiveness and feasibility of controller 

in Section 4 and conclusions follow in Section 5. 

 

 

2 Problem Formulation 
Consider the following SDHSs with disturbances 

and parameter perturbations 
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where nx  is the state vector; mu  is the 

controller; 
s  is the disturbances; rp  is a 

constant unknown vector representing parameter 

perturbations;    ( ) ( ), ,T n n

t tJ x p J x p 

   , 

   ( ) ( ),0T

t tJ x J x  ;  ( )0 , n n

tR x p

  , 

   ( ) ( ),0t tR x R x  ;  ( )

n m

tg x

  and 

 ( )

n s

tg x

  are sufficiently smooth functions; 

 ( )th x  is a weighting matrix; qz  is the penalty; 

 ( ) ,tH x p  is the subsystem’s Hamiltonian function 

(the total energy) satisfying  ( ) , 0tH x p  , 

   ( ) ( ),0t tH x H x   and 

   ( ) , ,t

H
H x p x p

x



 


; the map 

   0:[ , ) 1,2,t t N     is a piecewise 

constant one, called the switching law or switching 

path, and    1,2, ,t i i N    denotes that the 

i th  subsystem is realized. For an arbitrary 

switching law  t ,  
0m m

t



 is called the switching 

time sequence, which is assumed to satisfy 

0 1 2 mt t t t      . If 1mt   , the i th  

subsystem of system (1) is always realized in 

,mt   and the whole system is naturally stable.  

To use the dissipative Hamiltonian structural 

properties and the MLFs, we propose two 

assumptions as follows. 

Assumption 1. For i  , the Hamiltonian 

function  iH x  satisfies   2

iH x C  and the 

Hessian matrix   0Hess 0iH x  . 

Remark 1. Note that  iH x  has a local 

minimum at the equilibrium 0x  of system (1). It is 

straightforward that in Assumption 1,   2

iH x C  

guarantees the existence of   Hess iH x  and 

  0Hess 0iH x   guarantees that  iH x  is strict 

convex on some neighborhood of equilibrium 0x . 

Assumption 2. For i   and , nx y  , the 

Hamiltonian function  iH x  satisfies 

   i iH x H y 
P P

x y , where 

1

sup T

P
x

x x Px


 and 0P   is a positive definite 

matrix. 

Remark 2. Assumption 2 implies that the 

Hamiltonian function (candidate Lyapunov function) 
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 iH x  increases with the increase of 
P

x . 

Obviously, this assumption can be satisfied for 

many Hamiltonian systems. Thus, Assumption 2 is a 

realistic one. 

Lemma 1. [13] If Assumption 2 holds, 0u  , 

0   and   0iR x  , i  , then system (1) is 

globally asymptotically stable under the arbitrary 

switching laws  t  with its dwell time 0  . 

Definition 1. The problem considered in this 

paper is to propose a family of adaptive H
 

controller for systems (1), which can be described as: 

given a disturbance attenuation level 0   and an 

arbitrary switching law ( )t , we can obtain a 

family of adaptive H  controller of the form 

   

 

( )

( )

ˆ,

ˆ ˆ,

t t

t

u u x

x

 



 

  

  


 


                        (2) 

such that 

R1: For i   , mt T  and m Z , the 

inequality      2 221

2
i iH x x z    holds 

along the trajectories of the closed-loop system, 

which consisted of system (1) and the controller (2), 

where   0i x   is a scalar function. 

R2: The closed-loop system (1) is asymptotically 

stable when 0  . 

 

 

3 Main Results 

In this section, we propose a family of adaptive H  

controller for system (1) by using the dissipative 

Hamiltonian structural properties and the MLFs and 

an algorithm for solving parameters with symbolic 

computation. The parameterization method suggests 

a framework to solve adaptive H  control problem 

of SDHSs. 

Notation 1. ( )i iH H x  , ( )i i x  ,

 i ig g x ,  i ig g x ,  i ih h x ,  i iK K x . 

 

 

3.1 A family of adaptive
 
H  controllers 

Assumption 3. There exits an 1m n  matrix   

such that 

     , , ,
ii i H i i iJ x p R x p x p g         (3) 

where    , ,
iH i ix p H x p H    and 1n

i  is 

a constant parameter perturbation vector depending 

on p . 

Remark 3. Assumption 3 is the matched 

condition, a common assumption in adaptive control 

of Hamiltonian systems. In most cases, we can find 

i  and i  such that (3) holds [24]. 

Theorem 1. Suppose Assumption 1 and 2 hold 

for system (1) and give a disturbance attenuation 

level 0  , to i   

       

   2

1
, 0

2

T T

i i i i iR x p g g g g


                      (4) 

0T

i i iH g K                                (5) 

hold simultaneously. Then under an arbitrary 

switching law  t , adaptive H  control of system 

(1) can be realized by following controller which 

satisfies the rules R1 and R2. 

 

  2

1 1 ˆ
2

ˆ

T T

i i m i i i i it i

T T

i i i i i

u u h h I g H K

Q g H










  
        

 


  

 

   (6) 

where 1m

iK   is parameterized part of controller, 

mI  is an m m  unit matrix, ˆ
i  is an estimation of 

i  and iQ  is the adaptation gain matrix, which is 

constant, and note 

     2

1
,

2

0

T T T

i i i i i i i i

T

i i i

x H R x p g g g g H

H g K



 
     

 

 

. 

Proof. Suppose  t i   , mt T , m Z  is 

an arbitrary switching law. Substituting (6) into (1) 

and using condition (3) yield 

   

 2

1
, ,

2

1 ˆ
2

ˆ

T T

i i i i i i i i

T

i i i i i i i i

T T

i i i i

T

i i i

x J x p R x p H g h h g H

g g H g K g g

Q g H

z h g H

  





      


       


   


 

(7) 

which can be rewritten as an augmented 

Hamiltonian system 
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       

 

i i i i i i

T

i i i

X J X R X H X G G X

z h G H X

         


 

                (8) 

where ˆ,
T

T TX x  
 

,   ,0
T

T

i iG X g    , 

  ,0
T

T

i iG X g    ,  ,0
T

i iK  are with proper 

dimensions;    ˆ,
T

T
T

i i iH X H H     
  

, 

 
   ,

0

T
T T

i i i

i
T T

i i

J x p Q g
J X

Q g

  
 
  

, 

 
  2

1 1
, 0

2 2

0 0

T T T

i i i i i i i

i

R x p g h h g g g
R X 

 
  

 
  

      11 ˆ ˆ
2

T

i iH X H Q       , 

It is easy see that system (8) is still a class of 

dissipative Hamiltonian systems. 

We choose the candidate Lyapunov function 

    0i iV X H X c    ( c  is some number such 

that  iV X  is positive definite near  0 0 ,
T

T TX x   

and  iH X  has a local minimum at 0X ). For 

system (8), we have 

         
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


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 
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 

 

 
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 

   

   

     

 

2

2 22

2

1
,

2

1

2

1 1

2

T T

i i i i i i

T

i i i

T

i i

R x p g g g g H

H g K z

g H



 




 
   

 

  

  

   (9a) 

We obtain 

     

   

 

 

2

2

2 22

2 22

1
,

2

1 1 1

2 2

1

2

T T T T

i i i i i i i i i i i

i i

T

i i

H X H R x p g g g g H H g K

H X X

z g H

z



  


 

 
     

 

  

    

 

          (9b) 

where      2

1
0

2

T T

i i i i i i i iX R X G G G G G


       

is a scalar function. 

So the rule R1 can be satisfied, which implies the 

2L  gain of the closed-loop system (8) controlled by 

controller (6) (from   to z ) is bounded by  . 

Next, we prove that the closed-loop system is 

asymptotically stable at 
0x  under the arbitrary 

switching laws  t , when 0  . 

When 0  , the closed-loop system can be 

expressed 

         

 

 

   

   

2

2

2

2

1 1
,

2 2

1
,

2

1 1

2 2

1
,

2

T

i i i i i

T

i i i

T T T T

i i i i i i i i i

T

i i i

T T T

i i i i i i i

T T T T T T

i i i i i i i i i i i i i

T T T

i i i i i i

H X H X J X R X H X

H X g

H R x p g h h g g g H

H g K

H R x p g g g g H

H g h h g H H g g H H g K

H R x p g g g g











     



 
     

 



 
     

 

      

 
   



2 2

2

1 1
0

2 2

i

T T T

i i i i i i i i

H

h g H g H H g K





     

      (10) 

From Lemma 1, the rule R2 can be satisfied. 

So the closed-loop system (1) controlled by 

controller (6) is asymptotically stable under the 

arbitrary switching laws  t . This completes the 

proof.                                    □ 
Remark 4. (1)The condition (4) in Theorem is 

not restrictive, and can be easily satisfied in many 

systems. 

(2) iK  is a polynomial vector with parameters. 

We can obtain the parameters of iK  via solving 

condition (5). 
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(3)The proposed parameterization method can be 

used for general nonlinear switched systems, and of 

course the first step in applying the method is to 

express the nonlinear systems as DSHSs based on 

dissipative Hamiltonian realization methods [25, 26]. 

 

 

3.2 Solving parameters algorithm (SP) 

From condition (4), we can obtain the *

i . Let 

 *max i   such that condition (4) holds. Then 

we propose an algorithm to find parameters ranges 

of controller (6) via solving the parameters of 
iK  in 

condition (5), respectively. Note   iN x K . The SP 

algorithm now proceeds as follows. 

S1. Set        1 2

T

mN x N x N x N x     

and suppose a positive integer r , which is the 

degree of polynomial vector  N x . Write 

   
1,

j l

i ij r

j r

N x a p x




  , where  1,
r

l c n r r   , 

 
1

i
n r

r ii
p x x


  and n  is the number of state 

variable. 

S2. Let  T

i iS H g N x  . 

S3. The influence of high order items can be 

ignored because this paper consider locally 

asymptotically stable for system. Choose all terms 

of  deg 3S   and  deg 1S   from S  and let the 

coefficients of these terms be zero. So obtain a set 

of equations A . 

S4. Obtain a set of parameters solution 1U  via 

solving A  by using cylindrical algebraic 

decompositions (CAD) algorithm [27]. 

S5. Substitute 1U  into S  and obtain a new 

polynomial 'S , which is a quadratic form. 

S6. Rewrite 'S  as coefficient matrix M , and all 

principal minors of M  must be positive semi-

definite [28]. Choose all principal minors of M  and 

obtain inequalities B . 

S7. Obtain a set of parameters solution 2U  via 

solving B  by using CAD algorithm. 

S8. Let 1 2U U U and substitute U  into 

controller (4), thus obtain the polynomial 

parameterized controller. This completes the 

algorithm.                            □ 

Remark 5. (1)The SP algorithm starts from 

1r   normally. 

(2)The CAD algorithm is given by Semi-

Algebraic-Set-Tools of Regular-Chains in Maple 16. 

(3)The set of parameters solution obtained by SP 

algorithm is a subset of solutions of results by using 

CAD algorithm. 

 

 

4 Numerical experiment 
Consider a SDHS with disturbances and parameter 

perturbations, 

 

 

2

1 2 3

2

1 1 2 3

0 sin 1

( , ) sin 0 2

1 2 0

x x x

J x p x x x

  
 

   
  

11

1 0

0 1

1 0

g

 
 


 
  

, 12

0 0

1 0

0 1

g

 
 


 
  

,    1 , Diag 1,2,1R x p  , 

   2 2 2

1 1 2 1 3, 1H x p x x p x    , 

2

3

2

2 3

0 2

( , ) 0 1

2 1 0

x

J x p x

  
 

  
 
 

 

21

0 1

1 0

0 1

g

 
 


 
  

, 22

0 2

0 0

1 0

g

 
 


 
  

,    2 , Diag 1,3,2R x p 

   2 2 2

2 1 2 2 3

1
, 2 1

2
H x p x x p x     

where 1 1p   and 2 1p  .                                 (11) 

 

 

4.1  Controller design and solving parameters 

From system (11), it is easy to get 

    1 0Hess 2,2,2 0H x Diag  , 

    2 0Hess 1,4,2 0H x Diag   

So Assumption 1 holds. 

Then, we check that condition (4) holds for all x  

and given  . From system (11), we have 

Let 1 1   ， 2 2   . To ensure that condition 

(4) holds, the following statement should be 

satisfied. 

 1 2max ,                             (12) 

Next, we consider condition (5) such that system 

(11) satisfies robustness in H  control. Set the 

Lyapunov function    1 1V x H x ，

   2 2V x H x . It follows from controller (6) that 
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11

1 1 1 11 1 1 1 12

12

1 1 1 11 1

1 1 ˆ
2

ˆ

T T

m

T T

u
u h h I g H K

u

Q g H






    
          

  


  

 

            (13) 

21

2 2 2 21 2 2 2 22

22

2 2 2 21 2

1 1 ˆ
2

ˆ

T T

m

T T

u
u h h I g H K

u

Q g H






    
          

  


  

            (14) 

where  1 11 12

T
K K K ，  2 21 22

T
K K K . 

We know 4n   in system (11) and let 1r  . We 

have 

11 11 1 12 2 13 3K a x a x a x   , 12 11 1 12 2 13 3K b x b x b x   , 

21 21 1 22 2 23 3K a x a x a x   , 22 21 1 22 2 23 3K b x b x b x   , 

where ija , ijb , 1,2i  , 1,2,3j   are the parameters. 

From system (11), we obtain 

   1 1 2 32 2 2
T

H x x x x 

   2 1 2 34 2
T

H x x x x   

Let 1 1 11 1

TS H g K  , 2 2 21 2

TS H g K  , we have 

   

 

2

1 11 1 12 11 1 2 11 13 1 3

2 2

12 2 12 13 2 3 13 3

2 2 2 2 2

2 2 2 2

S a x a b x x a a x x

b x a b x x a x

     

   
 

   

 

2

2 21 1 21 22 1 2 21 23 1 3

2 2

22 2 23 22 2 3 23 3

4 2

4 4 2 2

S b x a b x x b b x x

a x a b x x b x

     

   
,
 

1S  and 2S  are quadratic form and can be rewritten 

as coefficient matrix 1M  and 2M (multiply constant 

2 for simplifying computation) , respectively. 

11 12 11 11 13

1 12 11 12 12 13

11 13 12 13 13

4 2 2 2 2

2 2 4 2 2

2 2 2 2 4

a a b a a

M a b b a b

a a a b a

     
 

     
 
      

, 

21 21 22 21 23

2 21 22 22 23 22

21 23 23 22 23

2 4 2

4 8 4 2

2 4 2 4

b a b b b

M a b a a b

b b a b b

     
 

     
 
      

. 

All principal minors of 1M  and 2M  must be 

positive semi-definite, we can obtain a set of 

parameters solution 1U  and 2U
 
using CAD 

algorithm, respectively.
 

 1 11 12 13 11 12 130, 0,a 0,b 0, 0, 0U a a b b        

                                                             (15) 

 2 21 22 23 21 22 23 210, 0,a 0,b 0, 0, 2U a a b b b      

                                                                              (16) 

Substitute 
1U  and 

2U  into controller (13) and (14), 

we obtain 

 

 

 

2

11 1 3 11 12

1 11

2

12 2 12 22

2

1 1 1 3 2 3 3

1

ˆ|
1

ˆ 2 4 2

t

h x x a x

u

h x b x

Q x x x x x












   
      
    

            

    


     (17) 

where 
11 0a  , 

12 0b  . 

 

 

2

21 2 22 22

2 22

2

22 1 3 21 1 21 32

2

2 2 1 3 2 3 3

1
2

ˆ|
1 1

2
2

ˆ 2 4 4

t

h x a x

u

h x x b x b x

Q x x x x x












   
     

    
                 

    


        (18) 

where 
22 0a  , 

21 0b  . 

So we have a family of controllers of system (11), 

which have parameters. 

 

 

4.2 Simulations and results 

In order to evaluate the robustness of the controller 

(17) and (18), we set the parameters of system (11) 

as: 2  , 11 2h  , 12 3h  , 21 3h  , 22 2h  and the 

parameters of controller as: ， ，

, 21 10b   . Choose  1 3 32
T

x x   ,

 2 3 32
T

x x    , 1 1
ˆ 2p  , 2 2

ˆ 2p  . We
 
have 

     

 

11 1 11 1 1

1 3 1 3 1 3

ˆ, , ,

2 4 2

H

T

J x p R x p x p g

p x p x p x

     

  
, 

     

 

22 2 21 2 2

2 3 2 3 2 3

ˆ, , ,

4 2 4

H

T

J x p R x p x p g

p x p x p x

     

   
 

So the condition (6) holds for system (11). Let 

1 1Q  , 2 1Q  , 1 0.8p  , 2 0.8p  , we obtain the 

controller (19) and (20), 

 

1 3 3 1

1

2 3 1

2

1 1 3 2 3 3

57 17 ˆ
4 4

|
77 ˆ2
4

ˆ 2 4 2

t

x x x

u

x x

x x x x x











  
    

  
   
   


   

         (19) 

11 10a   12 10b  

22 10a  
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 

2 3 2

2

1 3 3 2

2

2 1 3 2 3 3

57 ˆ
2

|
97 97 ˆ2
8 4

ˆ 2 4 4

t

x x

u

x x x

x x x x x











  
   

  
    
   


   

              (20) 

Suppose that    0 0,1,0.4
T

x   is the pre-

assigned operating point of system (11), we impose 

an external disturbance  4,4;4,4
T

   on system 

(11) during the time period 0.6~0.9s and 3~3.6s. 

The simulation results are shown in Figure. 1 and 

Figure. 2. 

Figure. 1 and Figure. 2 are the response of the 

state, the controller (19) and (20) and estimate ̂   of 

system (11) under the switching law  1 t , 

respectively. 

 
 

 
2 2 1 2 1 2

1

2 1 2 2 2 2 2 1

, , 0.15,   2,

, , 0.15,1,

k k k k

k k k k

t t t t t
t

t t t t t


 

   

  
 

  

0,1,2,k  , 

 
Figure. 1: Swing curves of x  under  1 t  

 

Figure. 2: Swing curves of u  and ̂  under  1 t  

When the conditions and the parameters of 

system (11) are not changing, the parameters of 

controller as: 
11 1a   , 

12 1b   , 
22 1a   , 

21 1b   . 

We obtain the other controller: 

         
 

1 3 3 1

1

2 3 1

2

1 1 3 2 3 3

21 17 ˆ
4 4

|
41 ˆ2
4

ˆ 2 4 2

t

x x x

u

x x

x x x x x











  
    

  
   
   


   

          (21) 

               

 

2 3 2

2

1 3 3 2

2

2 1 3 2 3 3

39 ˆ
2

|
25 25 ˆ2
8 4

ˆ 2 4 4

t

x x

u

x x x

x x x x x











  
   

   
    
   


   

      (22) 

Figure. 3 and Figure. 4 are the response of the 

state, the controller (21) and (22) and estimate ̂   of 

system (11) under the switching law  1 t , 

respectively. 

 
Figure. 3: Swing curves of x  under  1 t  

 

Figure. 4: Swing curves of u  and ̂  under  1 t  
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From Figure. 3 and Figure. 1, we know that we 

can adjust the parameters value in controller (17) 

and (18) to insure that the system (11) is adaptive 

H  
control and optimize the robustness of system 

(11) under  1 t .  

Then, we consider the robustness of system (11) 

against external disturbance and parameter 

perturbations under the arbitrary switching law. 

 2

1,

2,
t


 


 

 
2 2 1 2 1 2

2 1 2 2 2 2 2 1

, , 0.4 ,   

, , 0.4 ,

k k k k

k k k k

t t t t t rand

t t t t t rand

 

   

   

   

0,1,2,k  ,  

where 0 1rand  . 

Figure. 5 and Figure. 6 are the response of the 

state, the controller (21) and (22) and estimate ̂   of 

system (11) under the switching law  2 t , 

respectively. 

 
Figure. 3: Swing curves of x  under  2 t  

 

Figure. 4: Swing curves of u  and ̂  under  2 t  

From Figure.1 to Figure. 6, we can see that our 

adaptive controllers have stronger robustness 

against external disturbance and parameter 

perturbations under the fixed switching law or the 

arbitrary switching law. 

 

 

5. Conclusions 
In this paper, we consider adaptive H  control 

problem for SDHSs under arbitrary switching laws. 

When there are external disturbances and parameter 

perturbations in such systems, a family of 

controllers has been obtained using the MLFs 

method for such systems and an algorithm for 

solving parameters of the controller has been 

proposed with symbolic computation. The 

numerical experiment and simulations show that the 

controllers have efficient in adaptive H  control. 

The method proposed in this paper suggests a 

framework to solve adaptive H  control problem of 

general nonlinear switched systems. 
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